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The Scalable Modeling System (SMS) is a directive-based parallelization tool. The user 
inserts directives in the form of comments into existing Fortran code.  SMS translates the 
code and directives into a parallel version that runs on shared and distributed memory high-
performance computing platforms. Directives are available to support array re-sizing, inter-
process communications, loop translations, and parallel output.  SMS also provides 
debugging tools that significantly reduce code parallelization time.  SMS is intended for 
applications using regular structured grids that are solved using explicit finite difference 
approximation (FDA) or spectral methods. It has been used to parallelize ten atmospheric and 
oceanic models but the tool is sufficiently general that it can be applied to other structured 
grids codes.    
     The performance of SMS parallel versions of the Eta atmospheric and Regional Ocean 
Modeling System (ROMS) oceanic models is analyzed.  The analysis demonstrates that SMS 
adds insignificant overhead compared to hand-coded Message Passing Interface (MPI) 
solutions in these cases.  This research shows that, for the ROMS model, using a distributed 
memory parallel approach on a cache-based shared memory machine yields better 
performance than an equivalent shared-memory solution due to false sharing.    We also find 
that the ability of compilers/machines to efficiently handle dynamically allocated arrays is 
highly variable.  Finally, we show that SMS demonstrates the performance benefit gained by 
allowing the user to explicitly place communications.  We call for extensions of the High 
Performance Fortran (HPF) standard to support this capability. 
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1 INTRODUCTION 

In the early days of parallel supercomputers, shared memory vector 
processors comprised the dominant architecture.  Most large-scale 
atmospheric and oceanic models ran on these machines.  Although the 
hardware was expensive, it was relatively easy to do the programming 
required to obtain good performance.  Usually, this was simply a 
matter of ensuring that the array lengths passed to the vector pipes 
were sufficiently large (facilitated by smart compilers) and that the 
parallel code scaled to a few processors; this task is easily achievable 
with simple multi-tasking directives. 

These vector machines are still alive today.  The Japanese Earth 
Simulator, at $400 million, comprises NEC SX-6 vector platforms, 
and as of November 2002 was the top-ranked high performance 
computer in the world (36 teraflop/s) as measured by the LINPACK 
benchmark suite1.   However, since the early 1990s, there has been a 
shift toward distributed memory commodity microprocessor-based 
solutions.  This approach enables high performance computing to be 
provided at a relatively lower cost. 

A recent example demonstrates why this approach is attractive.  
The National Oceanic and Atmospheric Administration Forecast 
Systems Laboratory’s supercomputer is a Linux cluster constructed 
from 1500 commodity Intel processors.  Its LINPACK performance is 
3.6 teraflop/s (TF): sufficient enough for eighth in the November 2002 
ranking of the world’s fastest supercomputers.  While only one-tenth 
as powerful as the Earth Simulator, its price/performance is $1.5 
million/TF compared to $11 million/TF for the Simulator. 

This method of calculation neglects the hidden cost of developing 
and maintaining efficient parallel versions of models that are suitable 
for distributed memory architectures.  The required effort includes 
decomposing the data and computations, identifying where 
communication is required, and making the appropriate calls to 
Message Passing Interface (MPI)2 subroutines to implement this 
parallelization.  The final product is a code crowded with parallel 
programming constructs that often obscure the scientific calculations 
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expressed by the model.  This results in higher maintenance costs as 
scientists (often unskilled in writing MPI programs) struggle to keep 
the distributed memory parallel coding constructs and MPI subroutine 
calls updated with the evolving serial code.  Fundamentally, this is a 
difficult problem because scientists are forced to do parallel 
programming at a low level, akin to writing the serial code in 
assembly language. 

A variety of approaches have been developed to attempt to 
alleviate some of this burden.  For example, High Performance 
Fortran (HPF) is an attempt to automatically parallelize Fortran codes.  
Despite support by parallel computer vendors and scientific 
institutions, it has largely failed to live up to the promise of high-
performance and ease of use.  One shortcoming of HPF is the 
compiler’s inability to determine the optimal locations of inter-
processor communication.  Although code restructuring and insertion 
of additional HPF directives can help the compiler do a better job, 
additional effort is required by the programmer and performance is 
often significantly less than hand-coded solutions3.  Renewed efforts 
to optimize HPF have achieved some success4; however performance 
still lags MPI-based hand-coded solutions by at least 15 percent (often 
much more), and code restructuring is often required. 

Another approach, OpenMP, is a standard for directive-based 
parallelization targeted for shared and distributed-shared memory 
applications5.  A fine grain parallelization can be very quickly 
constructed using directives at the loop level.  However, scalability 
beyond a few processors requires implementation of a coarse grain 
parallelization as in the case of ROMS6.  OpenMP has become more 
widely used recently as part of hybrid MPI/OpenMP parallel 
implementations on clusters of Symmetric Multiple Processors 
(SMPs) as demonstrated by the presentations at this ECMWF 
conference.  Cocke and Christidis7 show the utility of this approach 
over a straight MPI implementation.  OpenMP has been successful 
because the use of directives hides detail, simplifying the 
parallelization process.  Even more significantly, it has now become a 
standard supported by most major vendors.   
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SMS, similar to HPF, is a directive-based approach that employs a 
distributed-memory programming model.  The user adds directives 
(comments) to the code that indicate, for example, how data and 
computations are distributed among the processors.  SMS translates 
the directives and serial code into a parallel version that runs correctly 
on both shared and distributed memory platforms.  Once the parallel 
code is working, various performance optimizations can be added as 
described in Section 2.  SMS provides support for much but not all of 
Fortran 90.  In contrast to HPF, the user is required to explicitly place 
communication directives into the code.  In this paper, SMS 
performance is analyzed in detail.  Section 2 reviews the key features 
of SMS.  Section 3 examines performance of SMS versions of an 
atmospheric and an oceanic model.  Section 4 concludes by proposing 
that the SMS prototype demonstrates the need to extend HPF to allow 
explicitly placed communication.  

2 KEY FEATURES OF SMS 

Since Govett, et al.8 and Henderson, et al.9 describe SMS in detail, 
this section will focus on key features of the tool.  In SMS, data are 
distributed using the DECLARE_DECOMP, CREATE_DECOMP, 
and DISTRIBUTE directives.  The first two simply enable the user to 
identify the existence of a decomposition, specifying the number of 
dimensions and the halo sizes.  The third directive, DISTRIBUTE, is 
key because it describes how arrays are decomposed among the 
processors.  For example, 

 
csms$distribute(my_decomp, 1, 2) begin 
           real x(im, jm, km) 
csms$distribute end 
 
indicates that the first and second dimensions of x are decomposed in 
blocks.     

In HPF, a distribute directive provides the same functionality. 
Based on its distribute directive and adjacent dependencies prescribed 
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by the code, HPF automatically places the communications needed to 
satisfy these dependencies.   In contrast, SMS requires the user to 
determine where communication is needed and then manually place it 
using the HALO_UPDATE directive.  Although this imposes 
additional burden on the scientist, it underscores the key weakness of 
HPF in terms of performance; it is simply too difficult for an HPF 
compiler to optimally place communication.  To illustrate these 
points, suppose a code has three subroutines and a main program:  
 
      subroutine A 
      w(1:im) = w(1:im) + (x(0:im-1) + x(2:im+1))/2.0 
 
      subroutine B 
      w(1:im) = w(1:im) + (y(0:im-1) + y(2:im+1))/2.0 
 
      subroutine UPDATE 
! Updates x and y 
 
      program MAIN 
      do i=1,iterations 
         call UPDATE 
         call A 
         call B 
      end do 
 
Assume that the arrays w, x, and y are decomposed using the 
distribute directive in both the HPF and SMS cases.  In both 
subroutines there are adjacent dependencies: the computation of w at 
any point i depends on values of x (or y) at i-1 and i+1.  HPF will do 
the halo updates of x and y separately, just prior to the calculation of 
w in each case.  On the other hand, in the case of SMS, the user can 
aggregate the communication of x and y, reducing latency: 
 
      do i = 1, iterations 
        call UPDATE 
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csms$halo_update(x,y) 
        call A 
        call B 
      end do 
 

The downside of the SMS approach is the added burden of 
correctly placing communication directives and maintaining them as 
the code evolves.  SMS provides two debugging directives to mitigate 
this additional effort.  The CHECK_HALO directive enables the user 
to assert that the halo region of a variable is up to date.  If the 
assertion proves false then an error message is printed and the parallel 
run stops.   For example, the CHECK_HALO directive could be 
inserted prior to the calculation of w in subroutine A above: 

 
csms$check_halo(x, “Checking x before the calculation of w”) 
 
If the assertion fails, the user knows that a HALO_UPDATE 
directive is missing or misplaced. 

 The second debugging directive, COMPARE_VAR, identifies 
cases where any variable, decomposed or non-decomposed, has 
different values for two separate runs of the parallel code.  In the 
example above, suppose the COMPARE_VAR directive is inserted 
after the calculation of w in subroutine A: 

 
csms$compare_var(w, “Checking w after it is computed”) 
 
At runtime, the user can, as an option, simultaneously launch two 
separate runs of the code (i.e., 1 and 4 processor runs).  When the two 
runs reach the COMPARE_VAR directive, the values of w are 
compared and, if there is a difference, an error message is printed and 
the two runs stop.  The COMPARE_VAR is more general than 
CHECK_HALO in that it also uncovers parallel bugs due to other 
causes such as failure to decompose an array or execute a global 
summation. 
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In addition to allowing the user to explicitly place communication, 
SMS provides other optimizations.  One, the ability for output to be 
done asynchronously with computations, is implemented by having 
the compute processors send their data to a designated server 
processor.  The compute processors can then continue with the next 
set of computations while the server writes to disk.  Also, SMS will 
automatically use the platform-dependent optimal underlying 
communication library (currently MPI or SHMEM).  Finally, at 
runtime, SMS allows the user to choose a processor layout (a mapping 
of grid points to processors).  The performance benefits of these 
optimizations are discussed in Section 3. 

3 PERFORMANCE ANALYSIS 

Govett, et al.8 examined some performance aspects of SMS.   This 
section extends their analysis for two models: the NOAA National 
Centers for Environmental Prediction Center (NCEP) Eta model and 
the Rutgers University ROMS model.  Dedicated machine time was 
not available for any of the results presented; instead, the minima of 
multiple repetitions are recorded.  The results cover a variety of 
platforms whose specifications are shown in Table 1. 

Eta10 is a mesoscale weather prediction model used to produce 
daily weather forecasts for the United States National Weather 
Service.  Govett, et al.8 compared performance of a hand-coded MPI 
version of the model run operationally at NCEP with an equivalent 
SMS version.  The MPI version was optimized by IBM for the SP3 
architecture.  The resolution tested was 223x365x45.  Table 2 is a 
reprint of the results of the comparison. 

The SMS version beats the MPI version at all processor counts.  
As Govett, et al.8 point out, this is largely due to the smaller amount 
of time the SMS code spends doing halo updates.  Table 3 shows 
these previously unpublished times.  The differences arise from the 
fact that the MPI version communicates the data using nearly twice as 
many MPI calls as the SMS version, resulting in additional latency. 
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Table 1 Hardware specifications for platforms used in SMS performance analysis.  The interconnect for 
the IA and Alpha machines is Myrinet 2000. 

Name Chip Clock 
Speed 
(GHz) 

CPUs 
per node 

Memory 
Bandwidth 

per PE 
(GB/s) 

FLOP 
per 

Cycle 

L2  
Cache 
(MB) 

T3E EV5 0.3 1 1.2 2 0.1 
IA-32 i686 2.2 2 1.6 2 0.5 
Alpha EV67 0.833 2 1.3 2 4.0 
SP3 Power3 0.375 4 0.3 4 8.0 
O3K R14000 0.6 64 1.4 2 8.0 
IA-64 Itanium 0.8 2 3.2 2 4.0 

 
 

Table 2  Performance of the MPI and SMS versions of the Eta model run on the NCEP IBM SP3.  Run 
times are given in seconds for a full 48-hour model run including initialization and the generation of 
hourly output files. 

Number of 
Processors 

MPI-Eta 
Time 

SMS-Eta 
Time 

SMS 
faster 

SMS-Eta 
Efficiency 

4 11197 10781  4 % 1.00 
8 5317 5258  1 % 1.03 
16 2878 2774  4 % 0.97 
32 1471 1446  2 % 0.93 
64 872 820  6 % 0.82 
88 694 643  7 % 0.76 

  
An additional experiment was performed in which the SMS 

version directives were modified so that the number of calls to the 
communications layer was the same as for the hand-coded MPI 
version.  In this case, at 88 processors, the halo-update time was 238 
seconds, roughly equivalent to the MPI version (243 seconds). 

We extend the Eta analysis further by examining the benefit of 
using asynchronous output in SMS.  A separate run using the same 
resolution was executed on the IA-32 machine using 88 processors.  
This time, output was written at model hours 0, 10, 20, 30, and 40.  
With asynchronous output turned off, the runtime was 684 seconds, of 
which 164 was spent doing output.  With asynchronous output 
enabled, the output time was reduced to 54 seconds.  This remaining 
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time is that required for the compute processors to send their pieces of 
the output to the server processor.  The savings of 110 seconds (a 15% 
improvement) was due to the fact that the server was writing the data 
to disk at the same time the compute processors proceeded with the 
next set of computations, hiding the disk write cost. 

 
Table 3 Halo update times for the MPI and SMS versions of the 48-hour Eta model run on the IBM SP3. 

Number of 
Processors 

MPI-Eta    
Halo Update 

Time 

SMS-Eta 
Halo Update 

Time 
4 1013 893 
8 771 631 
16 614 526 
32 388 348 
64 294 249 
88 243 214 

  
The ROMS version benchmarked here is identical to that studied 

by Govett, et al.8.  The resolution is 130x130x30.  As discussed by the 
authors, the SMS parallel version was constructed using the existing 
shared memory parallel code.  To simplify the SMS parallelization, 
the static memory (common block) serial code was converted to 
dynamic memory (Fortran 90 allocatable arrays) during the 
compilation process.  Table 4 shows the runtimes for various 
configurations on the different platforms. 

To begin, we examine the single processor performance.  The 
table row labeled “%Peak” shows a large variance in the ratio of 
sustained to peak performance for the serial (static memory) code over 
the different machines.  Overall, this is not surprising since no attempt 
was made to optimize the scalar code for each machine.  The IA-32 
processor results are particularly poor, partly due to the very small L2 
cache on these processors, as given in Table 1.  It may also be that the 
compiler was not able to take advantage of the “vector” 128-bit 
registers on the chip in some cases. 
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Table 4  Runtimes of the ROMS main model loop for time steps 2-21 on various platforms.  “Static” 
refers to the static memory (common block) serial code.  “Alloc” refers to the same code except common 
blocks are replaced with Fortran 90 allocatable arrays. The other rows refer to SMS parallel times for the 
given processor counts.  “PG” indicates results when SMS and the ROMS model are compiled with the 
Portland Group Fortran 90 compiler.  “IFC” indicates results when the code was compiled using the Intel 
compiler.  The “% Peak” field refers to the percentage of the theoretical peak performance attained by 
the serial (static) code.  The theoretical peak is clock speed * maximum floating point operations per 
cycle.  The “Eff” field is the parallel efficiency relative to the serial code for that machine. The attained 
performance is the runtime divided by the measured number of floating point operations (23 GFLOP).   

Mach/ 
Config 

T3E IA-32 
PG 

IA-32 
IFC 

Alpha O3K SP3 IA-64 

Static/ 
%Peak 

n/a 83.4 
6.6% 

72.5 
7.6% 

81.7 
18.5% 

103.5 
17.6% 

106.8 
14.4% 

159.6 
8.6% 

Alloc/ 
Eff 

n/a 91.3 
0.91 

76.7 
0.95 

84.4 
0.97 

102.2 
1.01 

114.7 
0.93 

160.0 
0.99 

1x1 PE/ 
Eff 

n/a 91.8 
0.91 

76.8 
0.94 

89.7 
0.91 

106.6 
0.97 

116.1 
0.92 

161.8 
0.99 

1x2 PE/ 
Eff 

n/a 63.0 
0.66 

59.3 
0.61 

47.9 
0.85 

51.4 
1.01 

59.6 
0.90 

80.7 
0.99 

2x2 PE/ 
Eff 

n/a 29.2 
0.71 

26.7 
0.68 

27.0 
0.76 

29.0 
0.89 

37.5 
0.71 

40.9 
0.98 

2x4 PE/ 
Eff 

105.5 
n/a 

14.0 
0.75 

12.6 
0.72 

13.8 
0.74 

14.7 
0.88 

18.8 
0.71 

20.7 
0.96 

4x4 PE/ 
Eff 

55.0 
n/a 

7.7 
0.68 

6.9 
0.66 

8.2 
0.62 

8.1 
0.80 

11.2 
060 

12.5 
0.80 

4x8 PE/ 
Eff 

29.2 
n/a 

4.5 
0.58 

4.1 
0.55 

5.1 
0.50 

4.5 
0.72 

7.0 
0.48 

7.7 
0.65 

 
The T3E results are not available for fewer than 8 processors because 
the code does not fit in memory.   However, since the code scales 
nearly perfectly between 8 and 16 processors, we can estimate the 
single processor run-time as eight times the 8 processor run-time.  The 
result is 844 seconds or 27.3 megaflop/s (MF) per processor.  The 
T3E peak performance is 600 MF so the estimated single processor 
performance is 4.4% of peak.  This poor value is likely due in part to 
the very small cache on the T3E.  Also, since the resolution is small 
and the I dimension is decomposed in each of the reported cases in 
Table 4, vector lengths are short and so the effectiveness of the T3E 
memory streams hardware is reduced.  Overall, comparison of 
performance of the static and allocatable array versions shows that 
some machines/compilers have difficulty attaining the same 
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performance as the equivalent static memory version.  This 
observation is explored in depth later in this section.   

Turning to the SMS parallel version, the results for 1 PE indicate a 
drop-off for some of the platforms compared to the dynamic memory 
version of the serial code.  When the SMS version is created, halo 
points are added to all decomposed arrays (as would be the case for a 
hand-coded MPI version).  The additional memory changes the cache 
behavior of the model.  Further investigation would be needed to 
explain why this causes measurably poorer cache re-use on some 
platforms but not others. 

The remaining rows in Table 4 show how the SMS parallel 
version scales.  In several cases, there are steep drop-offs when all 
processors on a node are used, notably the IA-32 (2 cpus/node) and 
the SP3 (4 cpus/node).  This likely occurs because the demand for 
memory access created by using all CPUs on a node exceeds the 
available bandwidth.  This memory contention does not occur on the 
IA-64 because it has, for example, twice the memory bandwidth and 8 
times the amount of L2 cache as compared to the IA-32.  The 
scalability drops off at 16 and 32 processors for all machines as 
communication, loop overhead, etc. begin to dominate.  The SP3 is 
the worst case since it has the highest ratio of communication time 
(Table 5) to computation time.   

The impact of SMS halo updates on scalability is now considered.  
The first time each halo directive is encountered at runtime, the 
communication patterns are stored away to avoid re-computing them. 
For the remainder of the model run, halo updates are implemented 
using a four-step process: 

1. Search through the list of cached communication patterns to 
find the correct one. 

2. Pack the data to be communicated into buffers. 
3. Communicate the contents of the buffers to the appropriate 

processors. 
4. Unpack the received data into the halo regions of the arrays. 
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Each of these steps was timed within the main model loop. 
Barriers were placed prior to turning on the timers in order to 
eliminate the effects of process skew.  The sums of these steps are the 
communication times shown in Table 5.  The first step is overhead 
that should not occur in a hand-tuned, application-specific MPI 
version.  This overhead as a fraction of the total communication time 
is also listed in the table.   Although not shown, further measurements 
indicate that between 30% and 60% of the searching process could be 
eliminated by directly associating each directive with a cached 
communication pattern.   
Table 5 Communication times and SMS overhead for various platforms and processor counts.  “sms+” 
refers to the overhead added by SMS as a percentage of the total communication time. 

Mach 
Pes 
sms+ 

T3E IA-32 
PG 

IA-32 
IFC 

Alpha O3K SP3 IA-64 

2 
sms+ 

n/a 1.13 
8.8% 

1.03 
7.1% 

1.32 
6.5% 

0.73 
4.0% 

0.66 
10.8% 

0.82 
10.8% 

4 
sms+ 

n/a 1.64 
6.3% 

1.54 
5.0% 

1.77 
3.8% 

1.29 
2.5% 

1.05 
8.3% 

1.54 
6.1% 

8 
sms+ 

3.92 
5.0% 

1.71 
5.6% 

1.61 
4.6% 

1.85 
3.5% 

1.34 
2.3% 

1.93 
4.6% 

1.82 
5.0% 

16 
sms+ 

3.99 
4.8% 

1.59 
5.2% 

1.52 
 4.4% 

1.62 
3.4% 

1.36 
2.3% 

2.31 
3.8% 

1.64 
5.6% 

32 
sms+ 

3.39 
5.7% 

1.40 
5.1% 

1.33 
4.6% 

1.49 
3.5% 

1.27 
2.2% 

2.30 
3.9% 

1.51 
6.0% 

  
As mentioned in Section 2, SMS is designed to automatically 

choose an underlying communications package depending on the 
target platform.  On the T3E, this is the SHMEM library.  An 
experiment was conducted in which SHMEM calls were replaced with 
MPI calls.  The measured communication times were 20% higher than 
those reported in Table 5. 

We further examine the scalability of the SMS version of ROMS 
by looking at the performance for different processor layouts and by 
comparing it to the shared memory parallel results.  Table 6 shows 
these performance numbers for the Origin 3000.  Surprisingly, the 
SMS 2x8 layout outperforms the 4x4 layout.  Consider first the 
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computations. For a 2x8 layout, the length in the I dimension is longer 
than a 4x4 layout.  This provides more opportunity for software 
pipelining and pre-fetching of cache lines.   
Table 6 Main model loop runtimes and efficiencies of the SMS and shared memory versions of ROMS 
on the Origin 3000 for various processor layouts.  The efficiencies are relative to the shared memory 
time for a 1x1 processor layout. 

PE 
Layout 

Shared 
Memory 

Time 

Shared  
Memory 

Efficiency 

SMS 
Time 

SMS 
Efficiency 

1x1 103.5 1.00 106.6 0.97 

1x2 51.80 0.99 51.46 1.01 

1x4 26.40 0.98 27.43 0.94 

2x2 35.29 0.73 29.01 0.89 

1x8 13.98 0.93 14.72 0.88 

2x4 18.75 0.69 14.65 0.88 

1x16 7.72 0.84 8.41 0.77 

2x8 9.85 0.66 7.86 0.82 

4x4 n/a n/a 8.08 0.80 

1x28 5.79 0.64 5.51 0.67 

4x7 8.87 0.42 4.99 0.74 

1x32 5.36 0.60 5.13 0.63 

4x8 7.62 0.42 4.53 0.71 

  
In terms of communication, the standard presumption is that the 

communications time would be shorter for the 4x4 layout since the 
perimeter is smaller.  Although not shown in the table, in this case the 
4x4 communication time (1.32 seconds) is longer than the 2x8 
communication time (1.19 seconds).  Further measurements showed 
that all of this difference was due to increased packing and unpacking 
times for the 4x4 case.  It is possible that software pipelining and 
cache-line pre-fetching play a role here as well.   Despite the smaller 
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perimeter for the 4x4 case, the actual MPI communication time (step 
3 above) was identical for both two cases.  Although this requires 
further investigation, we speculate that latency rather than bandwidth 
was the dominant factor.  The improvement gained by using SMS 
configuration files to specify a 2x8 layout rather than the default 4x4 
layout demonstrate the added value of this SMS feature.  

When considering the shared memory parallel version of the 
ROMS model, we see from Table 6 that the 1-D layouts outperform 
2-D layouts in every case.  This is due to the overhead associated with 
false sharing in the shared memory code.  Measurement of secondary 
cache misses and cache line invalidations by other processors (Table 
7) supports this argument.  The Barotropic Step function profiled in 
the table consumes the largest portion of runtime in the model.  The 2-
D shared-memory layout has 4.5 times as many secondary cache 
misses as the 1-D layout. 
Table 7 Secondary cache misses and invalidations by external processors for the Barotropic Step 
function as measured by the SGI Speedshop tool during the ROMS main model time step. 

Parallel 
Version 

PE 
Layout 

Secondary  
Cache 
Misses 

External  
Invalidations 

Shared 
Memory 

1x32 4700 7800 

Shared 
Memory 

4x8 20000 21000 

Distributed 
Memory 

1x32 600 400 

Distributed 
Memory 

4x8 400 500 

  
The external cache invalidations reflect a similar story.  Figure 1 
illustrates why this is happening.  For a 2-D layout, there are far more 
opportunities for cache misses than a 1-D layout.  
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Figure 1 Schematic in which false sharing occurs for 1-D and 2-D processor layouts for shared memory 
parallelism.   False sharing occurs when two processors shared a cache line but not the actual data.  So, 
for example, in the 1-D layout, the last two grid points in the last row of the piece of the array “owned” 
by P0 map to the same cache line as the first two grid points in the first row of the array piece “owned” 
by P1.  Thus, when P0 writes to that cache line, it invalidates it for P1 and the converse happens when 
P1 writes to the cache line.  If this writing occurs simultaneously then a thrashing effect occurs which 
degrades performance. 

Since the shared-memory parallel version is implemented in a 
coarse grain fashion, where the parallel loops cover a significant 
number of computations, it should be efficient enough to reasonably 
compare it with the SMS (distributed memory parallel) performance. 
Table 6 shows that while the codes are fairly equivalent up through 
16 processors, subsequently the SMS version beats the shared 
memory version.  Again, this is due to false sharing in the shared 
memory code.  Table 7 shows that the secondary cache invalidations 
and external invalidations are negligible in the distributed memory 
code as compared to shared memory.  For a distributed memory 
parallel code, the data for each processor are stored in completely 
separate memory locations, eliminating the possibility of false 
sharing. 

We conclude our analysis of the SMS ROMS performance by 
looking at how the use of dynamic memory impacts the scalability of 
the parallel code.  Since a static memory SMS parallel version was not 
available, a stand-alone kernel was constructed from the ROMS 
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Barotropic step routine, at the same resolution.  Figure 2 shows four 
variations that were created.  

Performance of the “allocatable,” “derived-type/pointer,” and “de-
referenced pointer” cases were compared to the original “static” case 
for various platforms and processor counts.  As mentioned, to 
simplify the SMS parallelization, the ROMS code was converted to 
use allocatable arrays during the compilation process.  Table 8 shows 
the effect of this conversion.  At 32 processors, the “allocatable array” 
version of the kernel executes at only 64% the efficiency of the 
original static memory scheme on the IA-32 machine when the 
Portland Group Compiler is used.  In most other cases, the allocatable 
array scheme does not negatively impact performance as significantly.  
It is also remarkable that, for 32 processors on the SGI Origin 3000, 
despite taking a hit for using dynamic memory, the SMS version out-
performs the shared memory parallel version (Table 6). 

In Table 9, we see that the performance drop-off for using Fortran 
90 pointers with derived types is quite dramatic for the Portland 
Group compiler case.  The SGI Origin 3000 results worsen as well.  
This could be due to extra precaution the compiler takes when dealing 
with pointers since they can point to overlapping locations in memory. 

To work around these compiler weaknesses, a common trick is to 
de-reference the pointers by passing them as arguments to the 
computationally intensive subroutines.  Table 10 shows the results for 
this scheme.  The T3E and IA-32 performances are noticeably better.  
For the T3E, the “de-referenced” case is actually better than the 
“allocatable” case.  
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ROMS Barotropic Step Kernel 
 
Static: 
      common /c1/ U(IM,JM,KM) 
      call KERNEL         ! references U 
 
Allocatable: 
      real, allocatable :: U(:,:,:) 
      call KERNEL         ! references U 
 
Derived Type/Pointer: 
      type t1 
        real, pointer :: U(:,:,:) 
      end type t1 
      type (t1) :: o1 
      call KERNEL         ! references o1%U 
 
Dereferenced Pointer: 
      call KERNEL(o1%U)   ! References dummy arg 
 

Figure 2 Illustration of how the ROMS Barotropic Step kernel was constructed with various Fortran 
coding constructs.  In the original code, main model variables were stored in common blocks.   In the 
second variation, the common blocks were replaced with Fortran 90 allocatable arrays.  The third 
variation stores the model variables as Fortran 90 pointers within objects of derived types.  The final 
variation is the same as the third except the pointers are de-referenced by passing them to the kernel 
subroutine.  In this case, within the subroutine, the variables are declared as simple array dummy 
arguments. 
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Table 8  Efficiency of the allocatable array scheme for managing memory in the ROMS Barotropic step 
kernel relative to the common block variation for various platforms and processor counts.  The 
resolution is 130x130x30. 

Mach/ 
Pes  

T3E IA-32 
PG 

IA-32 
IFC 

Alpha O3K SP3 IA-64 

1 n/a 0.89 1.00 1.02 0.85 0.95 0.98 
2 0.96 1.00 1.02 0.99 0.89 0.98 1.03 
4 0.88 0.98 0.94 0.97 0.95 0.95 0.99 
8 0.88 0.92 0.95 1.01 0.92 0.97 0.99 

16 0.92 0.85 0.89 0.92 0.84 0.97 1.00 
32 0.89 0.64 0.84 0.97 0.85 0.96 n/a 

 
 

Table 9 The same as Table 8 except for the derived-type/pointer scheme. 

Mach/ 
Pes  

T3E IA-32 
PG 

IA-32 
IFC 

Alpha O3K SP3 IA-64 

1 n/a 0.55 0.89 0.68 0.80 0.94 0.98 
2 0.94 0.81 1.02 0.74 0.84 1.00 1.03 
4 0.87 0.69 0.92 0.68 0.92 0.79 0.99 
8 0.87 0.56 0.84 0.70 0.90 1.00 0.99 

16 0.90 0.45 0.77 0.72 0.82 0.99 1.00 
32 0.88 0.27 0.84 0.80 0.82 0.98 n/a 

 
 

Table 10 The same as tables 8 and 9 except for the de-referenced pointer scheme. 

Mach/ 
Pes  

T3E IA-32 
PG 

IA-32 
IFC 

Alpha O3K SP3 IA-64 

1 n/a 0.93 0.97 0.98 0.86 0.95 0.98 
2 1.02 1.02 1.03 0.96 0.89 1.00 1.03 
4 0.95 0.98 0.98 0.93 0.96 0.83 0.99 
8 0.96 0.92 0.90 0.99 0.92 1.00 0.99 

16 1.00 0.86 0.83 0.91 0.85 1.04 1.00 
32 0.98 0.67 0.77 0.94 0.86 0.98 n/a 
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4 SUMMARY AND CONCLUSIONS 

Here we have examined the performance of SMS parallel versions of 
the Eta atmospheric and ROMS oceanic models.  Previously, Govett, 
et al.8 showed that SMS Eta beats the performance of a hand-coded 
MPI version of the model running operationally at NCEP, largely 
because it does a better job of aggregating halo updates.  The results 
here show that when the difference in aggregation is removed, the 
SMS halo update times match those for the MPI version.  On the Cray 
T3E, using SHMEM to implement halo updates resulted in a 20% 
decrease in communication time over MPI.   

By definition, a perfectly tuned hand-coded MPI version of Eta or 
any other code will beat the performance of an SMS version since the 
latter is built on top of MPI.  However, the hand-coded MPI version 
of the operational NCEP Eta model demonstrates that this can be 
difficult in practice.  Thus, an advantage of using an approach like 
SMS is that the effort to implement optimizations does not have to be 
repeated for every model.  The disadvantage of the SMS approach is 
that the additional software layer adds overhead.  However, the SMS 
ROMS results show that the overhead for the critical halo update 
communications ranges from 2-11%; one-third to two-thirds of which 
could be eliminated with an improved SMS design.     

To simplify the SMS parallelization, the ROMS code was 
converted to use Fortran 90 allocatable arrays during compilation.  
This incurred a performance penalty on some machines.  When 
pointers within derived types are used, the performance is worse than 
the allocatable array version for some machines.  This result is 
significant since oceanic and atmospheric scientists are beginning to 
implement object-oriented designs using these constructs.  The results 
here also show that these penalties can be mitigated by “de-
referencing” the pointers prior to the calls to core computational 
routines.  However, on some machines, performance penalties remain 
even with this optimization.  Clearly, some vendors need to put 
additional effort into avoiding performance pitfalls for dynamically 
allocated memory in Fortran 90. 
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We also find that, despite the performance hit due to dynamic 
memory usage on the SGI O3K, the SMS (distributed-memory 
parallel) version of ROMS still beats the shared-memory parallel 
version for higher numbers of processors.  This is due to the effects of 
false sharing.  The results also show the value added by the ability of 
the user to choose processor layouts at runtime using SMS 
configuration files.  And, finally, SMS asynchronous output is 
demonstrated to yield a 15% improvement in runtime for the Eta 
model for 88 processors on an IA-32 machine. 

In this paper, we have seen that SMS provides the user with a 
clean way to optimally locate communication in a code.  Although the 
requirement to identify where communication is needed adds extra 
burden on the scientist, SMS debugging directives provide substantial 
mitigation.  The end result is a directive-based tool that simplifies the 
parallelization process and generates code that has portable high 
performance. 

There are, however, two significant obstacles to the long-term 
success of SMS.  One is the lack of funding available to expand and 
support its capabilities.  To name a few examples of the additional 
work required, SMS needs to be able to fully support Fortran 90, 
provide more backend optimizations (such as SHMEM on the Alpha 
machines), support dynamic load balancing, and provide a means to 
handle non-rectangular grids.  The more fundamental obstacle is the 
lack of vendor support for the tool.  Many meteorological institutions 
are unwilling to utilize a tool that is not supported by the significant 
hardware vendors because of the risks involved.   

The OpenMP standard was born out of recognition of the value of 
providing a portable means for hiding the details of parallel 
programming on shared memory architectures.  The presentations at 
the 2002 ECMWF workshop demonstrated the continued 
attractiveness of this standard in the meteorological community.  The 
SMS prototype demonstrates that it is feasible to develop a standard 
for distributed memory architectures that exhibits portable high 
performance.  One reasonable solution might be to improve the 
existing HPF standard by providing a means for turning off 
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automatically generated communication and replacing it with user-
specified directives.  Further, by adding directive-based debugging 
support, HPF could finally turn the corner toward full success.  As a 
bonus, since using a distributed memory parallelization method avoids 
false sharing on cache-based shared memory machines, this truly high 
performance Fortran code may, in some cases, turn out to be a better 
solution than OpenMP for these architectures. 
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